MOS在控制器電路中的工作狀態:開通過程(由截止到導通的過渡過程)、導通狀態、關斷過程(由導通到截止的過渡過程)、截止狀態。MOS 主要損耗也對應這幾個狀態,開關損耗(開通過程和關斷過程),導通損耗,截止損耗(漏電流引起的,這個忽略不計),還有雪崩能量損耗。只要把這些損耗控制在 MOS 承受規格之內,MOS 即會正常工作,超出承受范圍,即發生損壞。而開關損耗往往大于導通狀態損耗,不同 MOS 這個
MOS在控制器電路中的工作狀態:開通過程(由截止到導通的過渡過程)、導通狀態、關斷過程(由導通到截止的過渡過程)、截止狀態。MOS 主要損耗也對應這幾個狀態,開關損耗(開通過程和關斷過程),導通損耗,截止損耗(漏電流引起的,這個忽略不計),還有雪崩能量損耗。只要把這些損耗控制在 MOS 承受規格之內,MOS 即會正常工作,超出承受范圍,即發生損壞。而開關損耗往往大于導通狀態損耗,不同 MOS 這個
什么是場效應管?場效應晶體管(Field Effect Transistor縮寫(FET))簡稱場效應管。主要有兩種類型:結型場效應管(junction FET—JFET)和金屬 - 氧化物半導體場效應管(metal-oxide semiconductor FET,簡稱MOS-FET)。場效應管有哪些基本參數? (1)場效應管的基本參數 ①夾斷電壓UP 也稱截止柵壓UGS(OFF),是在耗盡型結型
什么是場效應管?場效應晶體管(Field Effect Transistor縮寫(FET))簡稱場效應管。主要有兩種類型:結型場效應管(junction FET—JFET)和金屬 - 氧化物半導體場效應管(metal-oxide semiconductor FET,簡稱MOS-FET)。場效應管有哪些基本參數? (1)場效應管的基本參數 ①夾斷電壓UP 也稱截止柵壓UGS(OFF),是在耗盡型結型
什么是MOS管?它有什么特點?在常見的控制器電路中,MOS管有幾個工作狀態,而MOS 主要損耗也對應這幾個狀態,本文就來探討一下MOS的這些狀態的原理。MOS的工作狀態分為:開通過程(由截止到導通的過渡過程)、導通狀態、關斷過程(由導通到截止的過渡過程)、截止狀態。MOS對應這些狀態的主要損耗:開關損耗(開通過程和關斷過程),導通損耗,截止損耗(漏電流引起的,這個忽略不計),還有雪崩能量損耗。只要
什么是MOS管?它有什么特點?在常見的控制器電路中,MOS管有幾個工作狀態,而MOS 主要損耗也對應這幾個狀態,本文就來探討一下MOS的這些狀態的原理。MOS的工作狀態分為:開通過程(由截止到導通的過渡過程)、導通狀態、關斷過程(由導通到截止的過渡過程)、截止狀態。MOS對應這些狀態的主要損耗:開關損耗(開通過程和關斷過程),導通損耗,截止損耗(漏電流引起的,這個忽略不計),還有雪崩能量損耗。只要
你知道解析功率場效應管保護電路設計的方法嗎?它有什么作用?什么是保護電路 鑒于電源電路存在一些不穩定因素,而設計用來防止此類不穩定因素影響電路效果的回路稱作保護電路。比如有過流保護、過壓保護、過熱保護、空載保護、短路保護等。功率場效應管保護電路設計 功率場效應管自身擁有眾多優點,但是MOSFET管具有較脆弱的承受短時過載能力,特別是在高頻的應用場合,所以在應用功率MOSFET對必須為其設計合理的保
你知道解析功率場效應管保護電路設計的方法嗎?它有什么作用?什么是保護電路 鑒于電源電路存在一些不穩定因素,而設計用來防止此類不穩定因素影響電路效果的回路稱作保護電路。比如有過流保護、過壓保護、過熱保護、空載保護、短路保護等。功率場效應管保護電路設計 功率場效應管自身擁有眾多優點,但是MOSFET管具有較脆弱的承受短時過載能力,特別是在高頻的應用場合,所以在應用功率MOSFET對必須為其設計合理的保
場效應管是在三極管的基礎上而開發出來的。三極管通過電流的大小控制輸出,輸入要消耗功率。場效應管是通過輸入電壓控制輸出,不消耗功率。場效應管和三極管的區別是電壓和電流控制,但這都是相對的。電壓控制的也需要電流,電流控制的也需要電壓,只是相對要小而已。就其性能而言,場效應管要明顯優于普通三極管,不管是頻率還是散熱要求,只要電路設計合理,采用場效應管會明顯提升整體性能。1、三極管是雙極型管子,即管子工作
場效應管是在三極管的基礎上而開發出來的。三極管通過電流的大小控制輸出,輸入要消耗功率。場效應管是通過輸入電壓控制輸出,不消耗功率。場效應管和三極管的區別是電壓和電流控制,但這都是相對的。電壓控制的也需要電流,電流控制的也需要電壓,只是相對要小而已。就其性能而言,場效應管要明顯優于普通三極管,不管是頻率還是散熱要求,只要電路設計合理,采用場效應管會明顯提升整體性能。1、三極管是雙極型管子,即管子工作
第一種:雪崩破壞 如果在漏極-源極間外加超出器件額定VDSS的電涌電壓,而且達到擊穿電壓V(BR)DSS (根據擊穿電流其值不同),并超出一定的能量后就發生破壞的現象。 在介質負載的開關運行斷開時產生的回掃電壓,或者由漏磁電感產生的尖峰電壓超出功率MOSFET的漏極額定耐壓并進入擊穿區而導致破壞的模式會引起雪崩破壞。 典型電路:第二種:器件發熱損壞 由超出安全區域引起發熱而導致的。發熱的原因分為直
第一種:雪崩破壞 如果在漏極-源極間外加超出器件額定VDSS的電涌電壓,而且達到擊穿電壓V(BR)DSS (根據擊穿電流其值不同),并超出一定的能量后就發生破壞的現象。 在介質負載的開關運行斷開時產生的回掃電壓,或者由漏磁電感產生的尖峰電壓超出功率MOSFET的漏極額定耐壓并進入擊穿區而導致破壞的模式會引起雪崩破壞。 典型電路:第二種:器件發熱損壞 由超出安全區域引起發熱而導致的。發熱的原因分為直
DY種:雪崩破壞如果在漏極-源極間外加超出器件額定VDSS的電涌電壓,而且達到擊穿電壓V(BR)DSS (根據擊穿電流其值不同),并超出一定的能量后就發生破壞的現象。在介質負載的開關運行斷開時產生的回掃電壓,或者由漏磁電感產生的尖峰電壓超出功率MOSFET的漏極額定耐壓并進入擊穿區而導致破壞的模式會引起雪崩破壞。典型電路:第二種:器件發熱損壞由超出安全區域引起發熱而導致的。發熱的原因分為直流功率和
DY種:雪崩破壞如果在漏極-源極間外加超出器件額定VDSS的電涌電壓,而且達到擊穿電壓V(BR)DSS (根據擊穿電流其值不同),并超出一定的能量后就發生破壞的現象。在介質負載的開關運行斷開時產生的回掃電壓,或者由漏磁電感產生的尖峰電壓超出功率MOSFET的漏極額定耐壓并進入擊穿區而導致破壞的模式會引起雪崩破壞。典型電路:第二種:器件發熱損壞由超出安全區域引起發熱而導致的。發熱的原因分為直流功率和
MOSFET的擊穿有哪幾種? Source、Drain、Gate 場效應管的三極:源級S 漏級D 柵級G (這里不講柵極GOX擊穿了啊,只針對漏極電壓擊穿) 先講測試條件,都是源柵襯底都是接地,然后掃描漏極電壓,直至Drain端電流達到1uA。所以從器件結構上看,它的漏電通道有三條:Drain到source、Drain到Bulk、Drain到Gate。 1) Drain-》Source穿
MOSFET的擊穿有哪幾種? Source、Drain、Gate 場效應管的三極:源級S 漏級D 柵級G (這里不講柵極GOX擊穿了啊,只針對漏極電壓擊穿) 先講測試條件,都是源柵襯底都是接地,然后掃描漏極電壓,直至Drain端電流達到1uA。所以從器件結構上看,它的漏電通道有三條:Drain到source、Drain到Bulk、Drain到Gate。 1) Drain-》Source穿
摘要:板子上的功率MOS管是否能持續安全工作,是設計者最擔心的問題。炸機、用著用著就壞了、莫名其妙MOS管就炸了,遇到這些真是又怕又恨,可到底是哪里出問題了呢?這一切其實都和SOA有關。 我們知道開關電源中MOSFET、IGBT是最核心也是最容易燒壞的器件。開關器件長期工作于高電壓大電流狀態,承受著很大的功耗,一但過壓或過流就會導致功耗大增,晶圓結溫急劇上升,如果散熱不及時,就會導致器件損壞,甚至
摘要:板子上的功率MOS管是否能持續安全工作,是設計者最擔心的問題。炸機、用著用著就壞了、莫名其妙MOS管就炸了,遇到這些真是又怕又恨,可到底是哪里出問題了呢?這一切其實都和SOA有關。 我們知道開關電源中MOSFET、IGBT是最核心也是最容易燒壞的器件。開關器件長期工作于高電壓大電流狀態,承受著很大的功耗,一但過壓或過流就會導致功耗大增,晶圓結溫急劇上升,如果散熱不及時,就會導致器件損壞,甚至